11 research outputs found

    A refined invariant subspace method and applications to evolution equations

    Full text link
    The invariant subspace method is refined to present more unity and more diversity of exact solutions to evolution equations. The key idea is to take subspaces of solutions to linear ordinary differential equations as invariant subspaces that evolution equations admit. A two-component nonlinear system of dissipative equations was analyzed to shed light on the resulting theory, and two concrete examples are given to find invariant subspaces associated with 2nd-order and 3rd-order linear ordinary differential equations and their corresponding exact solutions with generalized separated variables.Comment: 16 page

    Ordinary differential equations which linearize on differentiation

    Full text link
    In this short note we discuss ordinary differential equations which linearize upon one (or more) differentiations. Although the subject is fairly elementary, equations of this type arise naturally in the context of integrable systems.Comment: 9 page

    On the classification of conditionally integrable evolution systems in (1+1) dimensions

    Full text link
    We generalize earlier results of Fokas and Liu and find all locally analytic (1+1)-dimensional evolution equations of order nn that admit an NN-shock type solution with Nn+1N\leq n+1. To this end we develop a refinement of the technique from our earlier work (A. Sergyeyev, J. Phys. A: Math. Gen, 35 (2002), 7653--7660), where we completely characterized all (1+1)-dimensional evolution systems \bi{u}_t=\bi{F}(x,t,\bi{u},\p\bi{u}/\p x,...,\p^n\bi{u}/\p x^n) that are conditionally invariant under a given generalized (Lie--B\"acklund) vector field \bi{Q}(x,t,\bi{u},\p\bi{u}/\p x,...,\p^k\bi{u}/\p x^k)\p/\p\bi{u} under the assumption that the system of ODEs \bi{Q}=0 is totally nondegenerate. Every such conditionally invariant evolution system admits a reduction to a system of ODEs in tt, thus being a nonlinear counterpart to quasi-exactly solvable models in quantum mechanics. Keywords: Exact solutions, nonlinear evolution equations, conditional integrability, generalized symmetries, reduction, generalized conditional symmetries MSC 2000: 35A30, 35G25, 81U15, 35N10, 37K35, 58J70, 58J72, 34A34Comment: 8 pages, LaTeX 2e, now uses hyperre

    Five types of blow-up in a semilinear fourth-order reaction-diffusion equation: an analytic-numerical approach

    Full text link
    Five types of blow-up patterns that can occur for the 4th-order semilinear parabolic equation of reaction-diffusion type u_t= -\Delta^2 u + |u|^{p-1} u \quad {in} \quad \ren \times (0,T), p>1, \quad \lim_{t \to T^-}\sup_{x \in \ren} |u(x,t)|= +\iy, are discussed. For the semilinear heat equation ut=Δu+upu_t= \Delta u+ u^p, various blow-up patterns were under scrutiny since 1980s, while the case of higher-order diffusion was studied much less, regardless a wide range of its application.Comment: 41 pages, 27 figure

    Ordinary Differential Operators Possessing Invariant Subspaces of the Power Type

    No full text
    Ordinary dierential operators possessing invariant subspaces spanned by the functions x , i = 0; 1; : : : ; n 1, are considered. A complete description of operators of the submaximal order n 2 is obtained. The dimension C 2n 1 of the linear space of such operators is conjectured to be the upper bound for the operators possessing arbitrary n-dimensional invariant subspace. A general representation for translation-invariant operators is found
    corecore